Bruhat Lattices, Plane Partition Generating Functions, and Minuscule Representations

Citations of this article
Mendeley users who have this article in their library.


The Bruhat posets (arising from Weyl groups) which are lattices are classified. Seshadri's standard monomial result for miniscule representations is used to show that certain combinatorially defined generating functions associated to these lattices satisfy certain identities. The most interesting cases of these identities are known plane partition generating function identities. Independent combinatorial proofs of the other identities are given. Then the combinatorial proofs of these identities are used as a step in a simplified proof of Seshadri's standard monomial result. Partial results to the effect that the Bruhat lattices are the only distributive lattices with such generating function identities are quoted (‘Gaussian poset’ conjecture), a potential Dynkin diagram classification result. New proofs of the fact that Bruhat lattices are rank unimodal and strongly Sperner are given. Geometric interpretations (with respect to minuscule flag manifolds) of the combinatorial quantities studied are described. © 1984, Academic Press Inc. (London) Limited. All rights reserved.




Proctor, R. A. (1984). Bruhat Lattices, Plane Partition Generating Functions, and Minuscule Representations. European Journal of Combinatorics, 5(4), 331–350.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free