The synthesis process has a significant influence on the properties of Ca1-xTiO3:Eu3+x phosphors; thus, an optimized process will lead to a better performance of the Ca1-xTiO3:Eu3+x phosphors. In this work, the feasibility of synthesizing the Ca1-xTiO3:Eu3+x phosphor with a good luminescent performance by combining the chemical co-precipitation method and microwave-assisted sintering was studied. The precursor of Ca1-xTiO3:Eu3+x phosphors were prepared by the chemical co-precipitation method. To find an optimized process, we applied both of the traditional (furnace) sintering and the microwave-assisted sintering to synthesize the Ca1-xTiO3:Eu3+x phosphors. We found out that a sintering power of 528 W for 50 min (temperature around 950°C) by a microwave oven resulted in similar emission intensity results compared to traditional furnace sintering at 900°C for 2.5 h. The synthesized Ca1-xTiO3:Eu3+x phosphors has an emission peak at 617 nm (5D0→7F2), which corresponds to the red light band. This new synthesized method is an energy efficient, time saving, and environmentally friendly means for the preparation of Ca1-xTiO3:Eu3+x red phosphor with good luminescent performance.
CITATION STYLE
Wang, H., Lu, J., Wang, R., Dong, Y., & Ding, L. (2020). Synthesis and characterization of the catio3: Eu3+ red phosphor by an optimized microwave-assisted sintering process. Materials, 13(4). https://doi.org/10.3390/ma13040874
Mendeley helps you to discover research relevant for your work.