Multi-frequency precise point positioning (PPP) has drawn attention along with the modernization of the Global Navigation Satellite Systems. There are now nearly 90 satellites providing multi-frequency signals. This contribution aims to achieve fast convergence of a few seconds for BDS/Galileo/GPS/QZSS integrated triple-frequency PPP with integer ambiguity resolution (IAR) without atmosphere corrections. A unified model of an uncombined and undifferenced manner for PPP-IAR with dual- and triple-frequency observations is presented. The uncalibrated phase delays (UPD) of extra wide-lane (EWL), wide-lane (WL), and N1 ambiguities for triple-frequency PPP are estimated with standard deviations of 0.02, 0.05, and 0.10 cycles achieved, respectively. The PPP-IAR validation based on 20 stations evenly distributed in China is conducted using UPD products generated from a regional network covering a large part of China. The EWL, WL, and N1 ambiguities are sequentially fixed utilizing the least-squares ambiguity decorrelation adjustment (LAMBDA) technique. In terms of convergence time, PPP instantaneous IAR is achievable without using atmosphere corrections, thanks to the contribution of the multi-frequency and multi-constellation observations. This has been proved by performing PPP-IAR restart every 10-min over 2520 times in our case study. For PPP-IAR solutions produced with BDS/Galileo/GPS/QZSS triple-frequency observations with an interval of 1 s, the convergence is fulfilled within 1 s for the horizontal components with an accuracy of better than 5 cm, while 2 s for the vertical component with better than 10 cm accuracy, and both are at 95% confidence level.
CITATION STYLE
Tao, J., Chen, G., Guo, J., Zhang, Q., Liu, S., & Zhao, Q. (2022). Toward BDS/Galileo/GPS/QZSS triple-frequency PPP instantaneous integer ambiguity resolutions without atmosphere corrections. GPS Solutions, 26(4). https://doi.org/10.1007/s10291-022-01287-3
Mendeley helps you to discover research relevant for your work.