RATIONALE: Myotonic dystrophy type 1 (DM1) is a slowly progressive multisystem neuromuscular disease characterized by myotonia and muscle weakness and wasting of distal and axial muscles. People with DM1, due to the disease progression, are often concerned about their ability to carry out and participate in the activities of daily living. Rehabilitation approaches in DM1, including moderate-to-intense strength training, have shown not univocal efficacy to face such difficulties. Aim of this case-study was to demonstrate the effects of a combined approach by using conventional plus robotic training in rare neuromuscular diseases, such as DM1. PATIENT CONCERNS: A 46-year-old woman came to our observation complaining of difficulty in opening fist after strong voluntary muscle contraction for about 20 years. Over the years, she referred swallowing difficulties for solid foods, balance impairment complicated by tendency to stumble and falls, fatigability, hand muscle weakness with difficulty to open bottles and lifting weights, and daytime sleepiness DIAGNOSIS:: Paraparesis in DM1. INTERVENTIONS: The patient underwent 2 different trainings. The first period of treatment was carried out by using conventional physiotherapy, 6 times a week (twice a day) for 4 weeks. Then, she underwent a two-month specific task-oriented robotic rehabilitation training for the gait impairment using an overground exoskeleton, namely Ekso-GT, combined to the conventional therapy. OUTCOMES: The patient, after the EKSO training, gained a significant improvement in walking, balance and lower limbs muscle strength, as per 10-meter walking test and Left Lower Limb Motricity Index. Neurophysiological data (electroencephalography and surface electromyography) were also collected to more objectively assess the functional outcomes. LESSONS: Rehabilitation approaches in DM1, including moderate-to-intense strength training, have shown not univocal efficacy. Emerging and advancing robotic technologies can enhance clinical therapeutic outcomes by allowing therapists to activate and/or modulate neural networks to maximize motor and functional recovery.
CITATION STYLE
Portaro, S., Naro, A., Leo, A., Cimino, V., Balletta, T., Buda, A., … Calabrò, R. S. (2019). Overground exoskeletons may boost neuroplasticity in myotonic dystrophy type 1 rehabilitation: A case report. Medicine, 98(46), e17582. https://doi.org/10.1097/MD.0000000000017582
Mendeley helps you to discover research relevant for your work.