Background: Previous studies have shown that P73 antisense RNA 1T (non-protein cod-ing), also known as TP73-AS1, is a long non-coding RNA (lncRNA) and involved in the development of medulloblastoma. However, the regulatory mechanism of lncRNA TP73-AS1 in medulloblastoma was still unclear, the present study was aimed to investigate the detailed functions and the mechanism of TP73-AS1 in regulation of medulloblastoma. Materials and methods: The levels of TP73-AS1, miR-494-3p, and Eukaryotic initiation factor 5A2 (EIF5A2) were determined using quantitative real-time PCR (qRT-PCR), in situ hybridization (ISH), or Immunohistochemistry (IHC). The function of TP73-AS1 in proliferation, apoptosis, migration, and invasion of medulloblastoma cells was evaluated using cell counting Kit-8 (CCK-8), flow cytometry, and transwell assay, respectively. The protein levels were determined by Western blot. Bioinformatics analysis and dual-luciferase reporter assay, RNA immunoprecipitation (RIP) and pull-down assay were used to search and confirm the target gene of TP73-AS1 and miR-494-3p. The effect of TP73-AS1 knockdown in vivo was detected by animal experiment. Results: The levels of TP73-AS1 and EIF5A2 were up-regulated, while miR-494-3p expression was down-regulated in medulloblastoma tissues and cells, ELF5A2 was a direct target of miR-494-3p, and miR-494-3p bound to TP73-AS1. The knockdown of TP73-AS1 inhibited cell proliferation, invasion, migration, and promoted apoptosis of medulloblastoma cells, while the miR-494-3p inhibitor abolished the effects of TP73-AS1 knockdown on medulloblastoma cells. Conclusion: TP73-AS1 positively regulated EIF5A2 expression by sponging miR-494-3p. These findings suggested that TP73-AS1 served as an oncogene and promoted the progression of medulloblastoma.
CITATION STYLE
Li, B., Shen, M., Yao, H., Chen, X., & Xiao, Z. (2019). Long noncoding RNA TP73-AS1 modulates medulloblastoma progression in vitro and in vivo by sponging miR-494-3p and targeting EIF5A2. OncoTargets and Therapy, 12, 9873–9885. https://doi.org/10.2147/OTT.S228305
Mendeley helps you to discover research relevant for your work.