Dynamic Energy Transfer Models

  • Kubsch M
  • Hamerski P
0Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Energy is a disciplinary core idea and a cross-cutting concept in the K-12 Framework for Science Education and the Next Generation Science Standards (NGSS). As numerous authors point out, the energy model in these standards emphasizes the connections between energy and systems. Using energy ideas to interpret or make sense of phenomena means tracking transfers of energy across systems (including objects and fields) as phenomena unfold. To support students in progressing towards this goal, numerous representations—both static and dynamic—that describe the flow of energy across systems exist. Static representations work well to describe phenomena where the flow of energy is unidirectional and the dynamics are not a focus but struggle to represent circular energy flows and the temporal order of complex, dynamic phenomena. Existing dynamic representations like Energy Theater are usually qualitative, i.e., they represent energy in ways that differentiate between larger or smaller rates of transfer but do not provide a more detailed quantitative picture. In this article, we present how an existing, empirically tested, static representation called Energy Transfer Model (ETM) can be turned into a dynamic representation that is quantitatively accurate using the freely available 3D animation programming environment GlowScript (https://www.glowscript.org). To do so, we first summarize the central ideas in a model of energy that emphasizes the idea of energy transfer between systems, and we describe how the ETM represents those ideas. Then, we introduce the dynamic ETM and explain how it goes beyond the limitations of its static counterpart and how its quantitative accuracy adds to existing dynamic representations. Lastly, we discuss how the dynamic ETM can be used to integrate computational thinking into the physics classroom.

Cite

CITATION STYLE

APA

Kubsch, M., & Hamerski, P. C. (2022). Dynamic Energy Transfer Models. The Physics Teacher, 60(7), 583–585. https://doi.org/10.1119/5.0037727

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free