Roles of specific membrane lipid domains in EGF receptor activation and cell adhesion molecule stabilization in a developing old factory system

11Citations
Citations of this article
45Readers
Mendeley users who have this article in their library.

Abstract

Background: Reciprocal interactions between glial cells and olfactory receptor neurons (ORNs) cause ORN axons entering the brain to sort, to fasciculate into bundles destined for specific glomeruli, and to form stable protoglomeruli in the developing olfactory system of an experimentally advantageous animal species, the moth Manduca sexta. Epidermal growth factor receptors (EGFRs) and the cell adhesion molecules (IgCAMs) neuroglian and fasciclin II are known to be important players in these processes. Methodology/Principal Findings: We report in situ and cell-culture studies that suggest a role for glycosphingolipid-rich membrane subdomains in neuron-glia interactions. Disruption of these subdomains by the use of methyl-β-cyclodextrin results in loss of EGFR activation, depletion of fasciclin II in ORN axons, and loss of neuroglian stabilization in the membrane. At the cellular level, disruption leads to aberrant ORN axon trajectories, small antennal lobes, abnormal arrays of olfactory glomerul, and loss of normal glial cell migration. Conclusions/Significance: We propose that glycosphingolipid-rich membrane subdomains (possible membrane rafts or platforms) are essential for IgCAM-mediated EGFR activation and for anchoring of neuroglian to the cytoskeleton, both required for normal extension and sorting of ORN axons. © 2009 Gibson et al.

Cite

CITATION STYLE

APA

Gibson, N. J., Tolbert, L. P., & Oland, L. A. (2009). Roles of specific membrane lipid domains in EGF receptor activation and cell adhesion molecule stabilization in a developing old factory system. PLoS ONE, 4(9). https://doi.org/10.1371/journal.pone.0007222

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free