Single-molecule localization microscopy allows practitioners to locate and track labeled molecules in biological systems. When extracting diffusion coefficients from the resulting trajectories, it is common practice to perform a linear fit on mean-squared-displacement curves. However, this strategy is suboptimal and prone to errors. Recently, it was shown that the increments between the observed positions provide a good estimate for the diffusion coefficient, and their statistics are well-suited for likelihood-based analysis methods. Here, we revisit the problem of extracting diffusion coefficients from single-particle tracking experiments subject to static noise and dynamic motion blur using the principle of maximum likelihood. Taking advantage of an efficient real-space formulation, we extend the model to mixtures of subpopulations differing in their diffusion coefficients, which we estimate with the help of the expectation-maximization algorithm. This formulation naturally leads to a probabilistic assignment of trajectories to subpopulations. We employ the theory to analyze experimental tracking data that cannot be explained with a single diffusion coefficient. We test how well a dataset conforms to the assumptions of a diffusion model and determine the optimal number of subpopulations with the help of a quality factor of known analytical distribution. To facilitate use by practitioners, we provide a fast open-source implementation of the theory for the efficient analysis of multiple trajectories in arbitrary dimensions simultaneously.
CITATION STYLE
Bullerjahn, J. T., & Hummer, G. (2021). Maximum likelihood estimates of diffusion coefficients from single-particle tracking experiments. Journal of Chemical Physics, 154(23). https://doi.org/10.1063/5.0038174
Mendeley helps you to discover research relevant for your work.