The Role of African Dust in Atlantic Climate During Heinrich Events

3Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Increased ice discharge in the North Atlantic is thought to cause a weakening, or collapse, of the Atlantic meridional overturning circulation (AMOC) during Heinrich events. Paleoclimate records indicate that these periods were marked by severe tropical aridity and dustiness. Although the driver of these events is still under debate, large freshwater input is necessary for climate models to simulate the magnitude, geographical extent, and abruptness of these events, indicating that they may be missing feedbacks. We hypothesize that the dust-climate feedback is one such feedback that has not been previously considered. Here we analyze the role of dust-climate feedbacks on the AMOC by parameterizing the dust radiative effects in an intermediate complexity model and consider uncertainties due to wind stress forcing and the magnitude of both atmospheric dust loading and freshwater hosing. We simulate both stable and unstable AMOC regimes by changing the prescribed wind stress forcing. In the unstable regime, additional dust loading during Heinrich events cools and freshens the North Atlantic and abruptly reduces the AMOC by 20% relative to a control simulation. In the stable regime, however, additional dust forcing alone does not alter the AMOC strength. Including both freshwater and dust forcing results in a cooling of the subtropical North Atlantic more comparable to proxy records than with freshwater forcing alone. We conclude that dust-climate feedbacks may provide amplification to Heinrich cooling by further weakening AMOC and increasing North Atlantic sea ice coverage.

Author supplied keywords

Cite

CITATION STYLE

APA

Murphy, L. N., Goes, M., & Clement, A. C. (2017). The Role of African Dust in Atlantic Climate During Heinrich Events. Paleoceanography, 32(11), 1291–1308. https://doi.org/10.1002/2017PA003150

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free