DNA phosphorothioation (PT) is widely distributed in the human gut microbiome. In this work, PT-diet effect on nematodes was studied with PT-bioengineering bacteria. We found that the ROS level decreased by about 20–50% and the age-related lipofuscin accumulation was reduced by 15–25%. Moreover, the PT-feeding worms were more active at all life periods, and more resistant to acute stressors. Intriguingly, their lifespans were prolonged by ~21.7%. Comparative RNA-seq analysis indicated that many gene expressions were dramatically regulated by PT-diet, such as cysteine-rich protein (scl-11/12/13), sulfur-related enzyme (cpr-2), longevity gene (jnk-1) and stress response (sod-3/5, gps-5/6, gst-18/20, hsp-12.8). Both the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis suggested that neuroactivity pathways were upregulated, while phosphoryl transfer and DNA-repair pathways were down-regulated in good-appetite young worms. The findings pave the way for pro-longevity of multicellular organisms by PT-bacterial interference.
CITATION STYLE
Huang, Q., Li, R., Yi, T., Cong, F., Wang, D., Deng, Z., & Zhao, Y. L. (2021). Phosphorothioate-DNA bacterial diet reduces the ROS levels in C. elegans while improving locomotion and longevity. Communications Biology, 4(1). https://doi.org/10.1038/s42003-021-02863-y
Mendeley helps you to discover research relevant for your work.