A Markov chain Monte Carlo (MCMC) methodology with bootstrap percentile estimates for predicting presidential election results in Ghana

1Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Although, there exists numerous literature on the procedure for forecasting or predicting election results, in Ghana only opinion poll strategies have been used. To fill this gap, the paper develops Markov chain models for forecasting the 2016 presidential election results at the Regional, Zonal (i.e. Savannah, Coastal and Forest) and the National levels using past presidential election results of Ghana. The methodology develops a model for prediction of the 2016 presidential election results in Ghana using the Markov chains Monte Carlo (MCMC) methodology with bootstrap estimates. The results were that the ruling NDC may marginally win the 2016 Presidential Elections but would not obtain the more than 50 % votes to be declared an outright winner. This means that there is going to be a run-off election between the two giant political parties: the ruling NDC and the major opposition party, NPP. The prediction for the 2016 Presidential run-off election between the NDC and the NPP was rather in favour of the major opposition party, the NPP with a little over the 50 % votes obtained.

Cite

CITATION STYLE

APA

Nortey, E. N. N., Ansah-Narh, T., Asah-Asante, R., & Minkah, R. (2015). A Markov chain Monte Carlo (MCMC) methodology with bootstrap percentile estimates for predicting presidential election results in Ghana. SpringerPlus, 4(1). https://doi.org/10.1186/s40064-015-1310-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free