Fast Commutation of DC Current into a Capacitor Using Moving Contacts

Citations of this article
Mendeley users who have this article in their library.
Get full text
This PDF is freely available from an open access repository. It may not have been peer-reviewed.


This paper describes a method of fast commutation of DC current into a capacitor. Theoretical study is provided, which enables evaluation of commutating DC current for the given contact velocity, capacitance, and dielectric strength. It is concluded that a non-zero contact velocity at separation is required, and a corresponding switch design is proposed. Experimental results on a laboratory setup illustrate successful DC current commutation up to 400 A, with voltages rising to 1.3 kV. Further experiments demonstrate that parasitic parameters reduce the magnitude of the current that can be commutated. A detailed non-linear PSCAD model and a linear model for the parasitic circuit are presented to enable prediction of the success of commutation. The model accuracy is confirmed with experimental tests. The DC current commutation in the proposed method occurs 5-10 μs after the contact separation, which is much faster than with other methods employing moving contacts. A further benefit of the extremely short arcing is the elimination of thermal issues on contacts, and possible simplified design of the mechanical switch.




Jovcic, D. (2020). Fast Commutation of DC Current into a Capacitor Using Moving Contacts. IEEE Transactions on Power Delivery, 35(2), 639–646.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free