- Conceição P
- Govc D
- Lazovskis J
- et al.

Network Neuroscience (2022) 6(2) 528-551

DOI: 10.1162/netn_a_00228

1Citations

2Readers

A binary state on a graph means an assignment of binary values to its vertices. A time-dependent sequence of binary states is referred to as binary dynamics. We describe a method for the classification of binary dynamics of digraphs, using particular choices of closed neighbourhoods. Our motivation and application comes from neuroscience, where a directed graph is an abstraction of neurons and their connections, and where the simplification of large amounts of data is key to any computation. We present a topological/graph theoretic method for extracting information out of binary dynamics on a graph, based on a selection of a relatively small number of vertices and their neighbourhoods. We consider existing and introduce new real-valued functions on closed neighbourhoods, comparing them by their ability to accurately classify different binary dynamics. We describe a classification algorithm that uses two parameters and sets up a machine learning pipeline. We demonstrate the effectiveness of the method on simulated activity on a digital reconstruction of cortical tissue of a rat, and on a nonbiological random graph with similar density.

CITATION STYLE

APA

Conceição, P., Govc, D., Lazovskis, J., Levi, R., Riihimäki, H., & Smith, J. P. (2022). An application of neighbourhoods in digraphs to the classification of binary dynamics. *Network Neuroscience*, *6*(2), 528–551. https://doi.org/10.1162/netn_a_00228

Mendeley helps you to discover research relevant for your work.

Already have an account? Sign in

Sign up for free