The Dunaliella salina photosynthetic apparatus organization and function was investigated in wild type (WT) and a mutant (zea1) lacking all β,β-epoxycarotenoids derived from zeaxanthin (Z). The zea1 mutant lacked antheraxanthin, violaxanthin, and neoxanthin from its thylakoid membranes but constitutively accumulated Z instead. It also lacked the so-called xanthophyll cycle, which, upon irradiance stress, reversibly converts violaxanthin to Z via a de-epoxidation reaction. Despite the pronounced difference observed in the composition of β,β-epoxycarotenoids between WT and zea1, no discernible difference could be observed between the two strains in terms of growth, photosynthesis, organization of the photosynthetic apparatus, photo-acclimation, sensitivity to photodamage, or recovery from photo-inhibition. WT and zea1 were probed for the above parameters over a broad range of growth irradiance and upon light shift experiments (low light to high light shift and vice versa). A constitutive accumulation of Z in the zea1 strain did not affect the acclimation of the photosynthetic apparatus to irradiance, as evidenced by indistinguishable irradiance-dependent adjustments in the chlorophyll antenna size and photosystem content of WT and zea1 strain. In addition, a constitutive accumulation of Z in the zea1 strain did not affect rates of photodamage or the recovery of the photosynthetic apparatus from photo-inhibition. However, Z in the WT accumulated in parallel with the accumulation of photodamaged PSII centers in the chloroplast thylakoids and decayed in tandem with a chloroplast recovery from photo-inhibition. These results suggest a role for Z in the protection of photo-damaged and disassembled PSII reaction centers, apparently needed while PSII is in the process of degradation and replacement of the D1/32-kD reaction center protein.
CITATION STYLE
Jin, E. S., Yokthongwattana, K., Polle, J. E. W., & Melis, A. (2003). Role of the reversible xanthophyll cycle in the photosystem II damage and repair cycle in Dunaliella salina. Plant Physiology, 132(1), 352–364. https://doi.org/10.1104/pp.102.019620
Mendeley helps you to discover research relevant for your work.