Increased chromosome instability dramatically disrupts neural genome integrity and mediates cerebellar degeneration in the ataxia-telangiectasia brain

106Citations
Citations of this article
57Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Ataxia telangiectasia (AT) is a chromosome instability (CIN) neurological syndrome arising from DNA damage response defects due to ATM gene mutations. The hallmark of AT is progressive cerebellar degeneration. However, the intrinsic cause of the neurodegeneration remains poorly understood. To highlight the relationship between CIN and neurodegeneration in AT, we monitored aneuploidy and interphase chromosome breaks (chromosomal biomarkers of genomic instability) in the normal and diseased brain. We observed a 2-3-fold increase of stochastic aneuploidy affecting different chromosomes in the cerebellum and the cerebrum of the AT brain. The global aneuploidization of the brain is, therefore, a new genetic phenomenon featuring AT. Degenerating cerebellum in AT was remarkably featured by a dramatic 5-20-fold increase of non-random DNA double-strand breaks and aneuploidy affecting chromosomes 14 and, to a lesser extend, chromosomes 7 and X. Novel recurrent chromosome hot spots associated with cerebellar degeneration were mapped within 14q12. In silico analysis has revealed that this genomic region contains two candidate genes (FOXG1B and NOVA1). The existence of non-random breaks disrupting specific chromosomal loci in neural cells with DNA repair deficiency supports the hypothesis that neuronal genome may undergo programmed somatic rearrangements. Investigating chromosome integrity in neural cells, we provide the first evidence that increased CIN can result into neurodegeneration, whereas it is generally assumed to be associated with cancer. Our data suggest that mosaic instability of somatic genome in cells of the central nervous system is more significant genetic factor predisposing to the brain pathology than previously recognized. © The Author 2009. Published by Oxford University Press. All rights reserved.

Cite

CITATION STYLE

APA

Iourov, I. Y., Vorsanova, S. G., Liehr, T., Kolotii, A. D., & Yurov, Y. B. (2009). Increased chromosome instability dramatically disrupts neural genome integrity and mediates cerebellar degeneration in the ataxia-telangiectasia brain. Human Molecular Genetics, 18(14), 2656–2669. https://doi.org/10.1093/hmg/ddp207

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free