Empirical study of correlated survival times for recurrent events with proportional hazards margins and the effect of correlation and censoring

14Citations
Citations of this article
51Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: In longitudinal studies where subjects experience recurrent incidents over a period of time, such as respiratory infections, fever or diarrhea, statistical methods are required to take into account the within-subject correlation. Methods. For repeated events data with censored failure, the independent increment (AG), marginal (WLW) and conditional (PWP) models are three multiple failure models that generalize Cox's proportional hazard model. In this paper, we revise the efficiency, accuracy and robustness of all three models under simulated scenarios with varying degrees of within-subject correlation, censoring levels, maximum number of possible recurrences and sample size. We also study the methods performance on a real dataset from a cohort study with bronchial obstruction. Results: We find substantial differences between methods and there is not an optimal method. AG and PWP seem to be preferable to WLW for low correlation levels but the situation reverts for high correlations. Conclusions: All methods are stable in front of censoring, worsen with increasing recurrence levels and share a bias problem which, among other consequences, makes asymptotic normal confidence intervals not fully reliable, although they are well developed theoretically. © 2013 Villegas et al.; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Villegas, R., Julià, O., & Ocaña, J. (2013). Empirical study of correlated survival times for recurrent events with proportional hazards margins and the effect of correlation and censoring. BMC Medical Research Methodology, 13(1). https://doi.org/10.1186/1471-2288-13-95

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free