Here we addressed the role of intersectin-2L (ITSN-2L), a guanine nucleotide exchange factor for the Rho GTPase Cdc42, in the mechanism of caveola endocytosis in endothelial cells (ECs). Immunoprecipitation and co-localization studies showed that ITSN-2L associates with members of the Cdc42-WASp-Arp2/3 actin polymerization pathway. Expression of Dbl homology-pleckstrin homology (DH-PH) region of ITSN-2L (DH-PHITSN-2L) induced specific activation of Cdc42, resulting in formation of extensive filopodia, enhanced cortical actin, as well as a shift from G-actin to F-actin. The "catalytically dead" DH-PH domain reversed these effects and induced significant stress fiber formation, without a detectable shift in actin pools. A biotin assay for caveola internalization indicated a significant decrease in the uptake of biotinylated proteins in DH-PHITSN-2L-transfected cells compared with control and 1 μM jasplakinolide-treated cells. ECs depleted of ITSN-2L by small interfering RNA, however, showed decreased Cdc42 activation and actin remodeling similar to the defective DH-PH, resulting in 62% increase in caveolamediated uptake compared with controls. Thus, ITSN-2L, a guanine nucleotide exchange factor for Cdc42, regulates different steps of caveola endocytosis in ECs by controlling the temporal and spatial actin polymerization and remodeling sub-adjacent to the plasma membrane. © 2009 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Klein, I. K., Predescu, D. N., Sharma, T., Knezevic, I., Malik, A. B., & Predescu, S. (2009). Intersectin-2L regulates caveola endocytosis secondary to Cdc42-mediated actin polymerization. Journal of Biological Chemistry, 284(38), 25953–25961. https://doi.org/10.1074/jbc.M109.035071
Mendeley helps you to discover research relevant for your work.