Inferring network properties based on the epidemic prevalence

Citations of this article
Mendeley users who have this article in their library.

This article is free to access.


Dynamical processes running on different networks behave differently, which makes the reconstruction of the underlying network from dynamical observations possible. However, to what level of detail the network properties can be determined from incomplete measurements of the dynamical process is still an open question. In this paper, we focus on the problem of inferring the properties of the underlying network from the dynamics of a susceptible-infected-susceptible epidemic and we assume that only a time series of the epidemic prevalence, i.e., the average fraction of infected nodes, is given. We find that some of the network metrics, namely those that are sensitive to the epidemic prevalence, can be roughly inferred if the network type is known. A simulated annealing link-rewiring algorithm, called SARA, is proposed to obtain an optimized network whose prevalence is close to the benchmark. The output of the algorithm is applied to classify the network types.




Ma, L., Liu, Q., & Van Mieghem, P. (2019). Inferring network properties based on the epidemic prevalence. Applied Network Science, 4(1).

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free