In this paper "well-to-pump" environmental analysis of pyrolytic diesel from Miscanthus gigantheus is performed. The average annual yield of Miscanthus from III-V year of cultivation on 1 ha of chernozem soil in Serbia (23.5 t) is considered as an input for the process. Two pyrolytic diesel pathways are considered: distributed pyrolytic pathway with external hydrogen production (from natural gas) and integrated pyrolytic pathway with internal hydrogen production (from pyrolytic oil), and are compared to a conventionally produced diesel pathway. The results of the analysis reveal that integrated-internal pyrolytic diesel pathway has lowest resources consumption and lowest pollutant emissions. Compared to conventionally produced diesel, integrated-internal pyrolysis pathway consumes 80% less of fossil fuels, and 92% more of Renewables, has 90% lower Global warming potential (GWP), 30% lower Terrestrial acidification potential (TA) but 38% higher Particulate matter formation potential (PMF). Compared to the distributed-external pathway, 88% less fossil fuels, and 36% less Renewables are consumed in the integratedinternal pathway, GWP is 97% lower, TA is 20% lower and PMF is 49% lower. Nevertheless, this pathway has high coal and hydroelectrical power consumption due to electricity production and high emissions of particulate matter, CO2, SOx, and N2O. Another drawback of this production pathway is the low yield of diesel obtained (38% lower than in distributed-external pathway). With this regard, it is still hard to designate production of diesel from fast pyrolysis of Miscanthus as a more environmentally friendly replacement of the conventional production diesel pathway.
CITATION STYLE
Peric, M. M., Komatina, M. S., Antonijevic, D. L., Bugarski, B. M., & Dželetovic, Ž. S. (2019). Diesel production by fast pyrolysis of Miscanthus Giganteus, Well-Topump analysis using the greet model. Thermal Science, 23, 365–378. https://doi.org/10.2298/TSCI171215113P
Mendeley helps you to discover research relevant for your work.