Microgrid technology is poised to transform the electricity industry. In the context of commercial/domestic buildings and data centers, where most loads are native direct current, DC microgrids are in fact a natural choice. Voltage stability and current/power-sharing between sources within a DC microgrid have been studied extensively in recent years. DC voltage droop control is known to have its drawbacks in that current or power-sharing is relatively poor. To eliminate this drawback, some have proposed to add a communication-based consensus control in addition to the primary voltage droop control loop. The current sharing performance is improved, however, the voltage deviation inherent in droop control requires a further, slower control to achieve voltage quality control. To overcome this complication, and reduction in response time, a low latency communicationbased control technique that achieves proportional current sharing without significant voltage deviations is proposed in this work. The stability of the proposed control technique is compared to state-of-the-art using eigenvalue and transient analyses. The negative impact of communication delays on proposed control is discussed in detail.
CITATION STYLE
Kolluri, R. R., Mareels, I., & De Hoog, J. (2020). Controlling DC microgrids in communities, buildings and data centers. IET Smart Grid, 3(3), 376–384. https://doi.org/10.1049/iet-stg.2019.0281
Mendeley helps you to discover research relevant for your work.