Desolvation and aggregation of sterically demanding alkali metal diarylphosphides

12Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

Abstract

The reaction between (Dipp)2PH and one equivalent of n-BuLi, PhCH2Na or PhCH2K in THF gives the complexes [(Dipp)2P]Li(THF)3 (2a), {[(Dipp)2P]Na(THF)2}2 (3a) and [(Dipp)2P]K(THF)4 (4a), respectively [Dipp = 2,6-iPr2C6H3]. Exposure of these compounds to vacuum yields the alternative solvates [(Dipp)2P]Li(THF)2 (2b), [(Dipp)2P]Na(THF)1.5 (3b), and [(Dipp)2P]K (4b), respectively; the alternative adduct [(Dipp)2P]Na(PMDETA) (3c) was prepared by treatment of 3a with PMDETA. Treatment of (Dipp)(Mes)PH or (Mes)2PH with one equivalent of n-BuLi in THF gives the complexes [(Dipp)(Mes)P]Li(THF)3 (7a) and [(Mes)2P]2Li2(THF)2(OEt2) (8a) after crystallisation from diethyl ether [Mes = 2,4,6-Me3C6H2]; crystallisation of 8a from hexane gives the alternative adduct [(Mes)2P]Li(THF)3 (8b). Exposure of 7a, 8a and 8b to vacuum leads to loss of coordinated solvent, yielding the solvates [(Dipp)(Mes)P]Li(THF)2 (7b) and [(Mes)2P]Li(THF) (8c). The solid-state structures of complexes 2a, 3a, 3c, 4a, 7a, 8a, and 8b have been determined by X-ray crystallography. Variable-temperature 31P{1H} and 7Li NMR spectroscopy indicates that 2b, 3b and 7b are subject to a monomer-dimer equilibrium in solution, where the monomeric forms are favoured at low temperature. In contrast, variable-temperature 31P{1H} and 7Li NMR spectroscopy suggests that 8c is subject to a dynamic equilibrium between a dimer and a cyclic trimer in solution, where the trimer is favoured at low temperatures.

Cite

CITATION STYLE

APA

Izod, K., Evans, P., & Waddell, P. G. (2017). Desolvation and aggregation of sterically demanding alkali metal diarylphosphides. Dalton Transactions, 46(40), 13824–13834. https://doi.org/10.1039/c7dt02238g

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free