Molecular Size and Separability Features of Pea Cell Wall Polysaccharides

  • Talbott L
  • Ray P
N/ACitations
Citations of this article
12Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Relative molecular size distributions of pectic and hemicellulosic polysaccharides of pea (Pisum sativum cv Alaska) third internode primary walls were determined by gel filtration chromatography. Pectic polyuronides have a peak molecular mass of about 1100 kilodaltons, relative to dextran standards. This peak may be partly an aggregate of smaller molecular units, because demonstrable aggregation occurred when samples were concentrated by evaporation. About 86% of the neutral sugars (mostly arabinose and galactose) in the pectin cofractionate with polyuronide in gel filtration chromatography and diethylaminoethyl-cellulose chromatography and appear to be attached covalently to polyuronide chains, probably as constituents of rhamnogalacturonans. However, at least 60% of the wall's arabinan/galactan is not linked covalently to the bulk of its rhamnogalacturonan, either glycosidically or by ester links, but occurs in the hemicellulose fraction, accompanied by negligible uronic acid, and has a peak molecular mass of about 1000 kilodaltons. Xyloglucan, the other principal hemicellulosic polymer, has a peak molecular mass of about 30 kilodaltons (with a secondary, usually minor, peak of approximately 300 kilodaltons) and is mostly not linked glycosidically either to pectic polyuronides or to arabinogalactan. The relatively narrow molecular mass distributions of these polymers suggest mechanisms of co- or postsynthetic control of hemicellulose chain length by the cell. Although the macromolecular features of the mentioned polymers individually agree generally with those shown in the widely disseminated sycamore cell primary wall model, the matrix polymers seem to be associated mostly noncovalently rather than in the covalently interlinked meshwork postulated by that model. Xyloglucan and arabinan/galactan may form tightly and more loosely bound layers, respectively, around the cellulose microfibrils, the outer layer interacting with pectic rhamnogalacturonans that occupy interstices between the hemicellulose-coated microfibrils.

Cite

CITATION STYLE

APA

Talbott, L. D., & Ray, P. M. (1992). Molecular Size and Separability Features of Pea Cell Wall Polysaccharides. Plant Physiology, 98(1), 357–368. https://doi.org/10.1104/pp.98.1.357

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free