An innovative approach allowing to rigorously address surface curvature and lighting effects in Digital Image Correlation (DIC) is proposed. We draw inspiration from the research work in Computer Vision (CV) regarding the physical modelling of a camera and adopt it to bring novel and significant capabilities for full-field measurements in experimental solid mechanics. It gives rise to a unified framework for global stereo DIC that we call Photometric DIC (PhDIC). It is based on the irradiance equation that relies on physical considerations and explicit assumptions, which stands for a clear breakthrough compared to the usual grey level conservation assumption. Most importantly, it allows to define a Digital Twin of the Region of Interest, which makes it possible to compare a model with different observations (real images taken from different viewpoints). This results in a consistent formalism throughout the framework, suitable for large-deformation and large-strain displacement measurements. The potential of PhDIC is illustrated on a real case. Multi-view images are first used to measure (or scan) the shape and albedo (sometimes called intrinsic texture) of an open-hole plate. The kinematic basis considered for the displacement measurement is associated to a Finite-Element mesh. Results for the shape and albedo measurement are compared for two completely different sets of pictures. Eventually, a large displacement of the structure is measured using a well-chosen single image.
CITATION STYLE
Fouque, R., Bouclier, R., Passieux, J.-C., & Périé, J.-N. (2022). Photometric DIC: a unified framework for global Stereo Digital Image Correlation based on the construction of textured digital twins. Journal of Theoretical, Computational and Applied Mechanics. https://doi.org/10.46298/jtcam.7467
Mendeley helps you to discover research relevant for your work.