Cytotoxic necrotizing factor 1 promotes bladder cancer angiogenesis through activating RhoC

21Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Uropathogenic Escherichia coli (UPEC), a leading cause of urinary tract infections, is associated with prostate and bladder cancers. Cytotoxic necrotizing factor 1 (CNF1) is a key UPEC toxin; however, its role in bladder cancer is unknown. In the present study, we found CNF1 induced bladder cancer cells to secrete vascular endothelial growth factor (VEGF) through activating Ras homolog family member C (RhoC), leading to subsequent angiogenesis in the bladder cancer microenvironment. We then investigated that CNF1-mediated RhoC activation modulated the stabilization of hypoxia-inducible factor 1α (HIF1α) to upregulate the VEGF. We demonstrated in vitro that active RhoC increased heat shock factor 1 (HSF1) phosphorylation, which induced the heat shock protein 90α (HSP90α) expression, leading to stabilization of HIF1α. Active RhoC elevated HSP90α, HIF1α, VEGF expression, and angiogenesis in the human bladder cancer xenografts. In addition, HSP90α, HIF1α, and VEGF expression were also found positively correlated with the human bladder cancer development. These results provide a potential mechanism through which UPEC contributes to bladder cancer progression, and may provide potential therapeutic targets for bladder cancer.

Cite

CITATION STYLE

APA

Guo, Y., Wang, J., Zhou, K., Lv, J., Wang, L., Gao, S., … Yao, Z. (2020). Cytotoxic necrotizing factor 1 promotes bladder cancer angiogenesis through activating RhoC. FASEB Journal, 34(6), 7927–7940. https://doi.org/10.1096/fj.201903266RR

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free