A highly specialized cytoskeletal protein, keratin 75 (K75), expressed primarily in hair follicles, nail beds, and lingual papillae, was recently discovered in dental enamel, the most highly mineralized hard tissue in the human body. Among many questions this discovery poses, the fundamental question regarding the trafficking and secretion of this protein, which lacks a signal peptide, is of an utmost importance. Here, we present evidence that K75 is expressed during the secretory stage of enamel formation and is present in the forming enamel matrix. We further show that K75 is secreted together with major enamel matrix proteins amelogenin and ameloblastin, and it was detected in Golgi and the endoplasmic reticulum (ER)–Golgi intermediate compartment (ERGIC) but not in rough ER (rER). Inhibition of ER–Golgi transport by brefeldin A did not affect the association of K75 with Golgi, whereas ameloblastin accumulated in rER, and its transport from rER into Golgi was disrupted. Together, these results indicate that K75, a cytosolic protein lacking a signal sequence, is secreted into the forming enamel matrix utilizing portions of the conventional ER–Golgi secretory pathway. To the best of our knowledge, this is the first study providing insights into mechanisms of keratin secretion.
CITATION STYLE
Yang, X., Yamazaki, H., Yamakoshi, Y., Duverger, O., Morasso, M. I., & Beniash, E. (2019). Trafficking and secretion of keratin 75 by ameloblasts in vivo. Journal of Biological Chemistry, 294(48), 18475–18487. https://doi.org/10.1074/jbc.RA119.010037
Mendeley helps you to discover research relevant for your work.