The rapid progress in the development and scientific investments of modified nanoparticles are due to their owed activity to various diseased conditions for which they are prepared. But the toxicity which they cause cannot be overlooked. The present study demonstrates the development of phosphatidylserine (PS)-coated chitosan (CS) nanoparticles (NPs) loaded with curcumin (CU), which was then investigated against human embryonic kidney cells (HEK 293) for its cytotoxic and genotoxic effect in rats. The CU-loaded CNPs (CNPs-CU) have been prepared by ionic gelation method, later which were grafted with PS. CNPs-CU and PS-CNPs-CU have been evaluated for their size, poly dispersity index, amount of drug entrapped, and in vitro CU release. CNPs-CU has an average size 167.6 ± 3.53 nm and polydispersity index (PDI) 0.115 ± 0.014, whereas PS-CNPs-CU shows average size 220 ± 3.67 nm and PDI 0.148 ± 0.019. Surface morphology of prepared NPs was confirmed by high-resolution transmission electron microscopy (HR-TEM). There was no major difference in cell viability between PS-CNPs-CU and CNPs-CU when they were exposed to HEK 293 cells at all equivalent concentrations. A series of genotoxic studies were conducted, which revealed the non-genotoxicity potential of the developed complexes. These results demonstrated that PS-CNPs-CU may be useful as potential delivery system.
CITATION STYLE
Zheng, Y., Chen, Y., Jin, L. W., Ye, H. Y., & Liu, G. (2016). Cytotoxicity and Genotoxicity in Human Embryonic Kidney Cells Exposed to Surface Modify Chitosan Nanoparticles Loaded with Curcumin. AAPS PharmSciTech, 17(6), 1347–1352. https://doi.org/10.1208/s12249-015-0471-1
Mendeley helps you to discover research relevant for your work.