Context. The blazar PKS 1510-089 is an example of flat spectrum radio quasars. High-energy emissions from this class of objects are believed to have been produced by IC radiation with seed photons originating from the broad line region. In such a paradigm, a lack of very high-energy emissions is expected because of the Klein-Nishina effect and strong absorption in the broad line region. Recent detection of at least three such blazars by Cherenkov telescopes has forced a revision of our understanding of these objects. Aims. We have aimed to model the observed spectral energy distribution of PKS 1510-089 from the high-energy flares in March 2009, during which very high-energy emission were also detected by H.E.S.S. Methods. We have applied the single-zone internal shock scenario to reproduce the multiwavelength spectrum of PKS 1510-089. We have followed the evolution of the electrons as they propagate along the jet and emit synchrotron and IC radiation. We have considered two sources of external photons: the dusty torus and the broad line region. We have also examined the effects of the gamma-gamma absorption of the high-energy photons both in the AGN environment (the broad line region and the dusty torus), as well as while traveling over cosmological distances: the extragalactic background light. Results. We have successfully modeled the observed spectrum of PKS 1510-089. In our model, the highest energy emission is the result of the Comptonization of the infrared photons from the dusty torus, thus avoiding Klein-Nishina regime, while the bulk of the emissions in the GeV range may still be dominated by the Comptonization of radiation coming from the broad line region. © ESO, 2014.
CITATION STYLE
Barnacka, A., Moderski, R., Behera, B., Brun, P., & Wagner, S. (2014). PKS 1510-089: A rare example of a flat spectrum radio quasar with a very high-energy emission. Astronomy and Astrophysics, 567. https://doi.org/10.1051/0004-6361/201322205
Mendeley helps you to discover research relevant for your work.