Cl- channels in the apical membrane of biliary epithelial cells (BECs) provide the driving force for ductular bile formation. Although a cystic fibrosis transmembrane conductance regulator has been identified in BECs and contributes to secretion via secretin binding basolateral receptors and increasing [cAMP]i, an alternate Cl- secretory pathway has been identified that is activated via nucleotides (ATP, UTP) binding apical P2 receptors and increasing [Ca2+]i. The molecular identity of this Ca2+-activated Cl- channel is unknown. The present studies in human, mouse, and rat BECs provide evidence that. TMEM16A is the operative channel and contributes to Ca2+-activated Cl- secretion in response to extracellular nucleotides. Furthermore, Cl- currents measured from BECs isolated from distinct areas of intrahepatic bile ducts revealed important functional differences. Large BECs, but not small BECs, exhibit cAMP-stimulated Cl- currents. However, both large and small BECs express TMEM16A and exhibit Ca2+-activated Cl- efflux in response to extracellular nucleotides. Incubation of polarized BEC monolayers with IL-4 increased TMEM16A protein expression, membrane localization, and transepithelial secretion (Isc). These studies represent the first molecular identification of an alternate, noncystic fibrosis transmembrane conductance regulator, Cl- channel in BECs and suggest that TMEM16A may be a potential target to modulate bile formation in the treatment of cholestatic liver disorders.
CITATION STYLE
Dutta, A. K., Khimji, A. K., Kresge, C., Bugde, A., Dougherty, M., Esser, V., … Feranchak, A. P. (2011). Identification and functional characterization of TMEM16A, a Ca 2+-activated Cl- channel activated by extracellular nucleotides, in biliary epithelium. Journal of Biological Chemistry, 286(1), 766–776. https://doi.org/10.1074/jbc.M110.164970
Mendeley helps you to discover research relevant for your work.