A novel wound dressing based on Ag/graphene polymer hydrogel: Effectively kill bacteria and accelerate wound healing

719Citations
Citations of this article
490Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Avoiding wound infection and retaining an appropriate level of moisture around woundz are major challenges in wound care management. Therefore, designing hydrogels with desired antibacterial performance and good water-maintaining ability is of particular significance to promote the development of wound dressing. Thus a series of hydrogels are prepared by crosslinking of Ag/graphene composites with acrylic acid and N,N'-methylene bisacrylamide at different mass ratios. The antibacterial performance and accelerated wound-healing ability of hydrogel are systematically evaluated with the aim of attaining a novel and effective wound dressing. The as-prepared hydrogel with the optimal Ag to graphene mass ratio of 5:1 (Ag5G1) exhibits stronger antibacterial abilities than other hydrogels. Meanwhile, Ag5G1 hydrogel exhibits excellent biocompatibility, high swelling ratio, and good extensibility. More importantly, in vivo experiments indicate that Ag5G1 hydrogel can significantly accelerate the healing rate of artificial wounds in rats, and histological examination reveals that it helps to successfully reconstruct intact and thickened epidermis during 15 day of healing of impaired wounds. In one word, the present approach can shed new light on designing of antibacterial material like Ag/graphene composite hydrogel with promising applications in wound dressing. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Cite

CITATION STYLE

APA

Fan, Z., Liu, B., Wang, J., Zhang, S., Lin, Q., Gong, P., … Yang, S. (2014). A novel wound dressing based on Ag/graphene polymer hydrogel: Effectively kill bacteria and accelerate wound healing. Advanced Functional Materials, 24(25), 3933–3943. https://doi.org/10.1002/adfm.201304202

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free