Ca 2+-Mediated Synthetic Biosystems Offer Protein Design Versatility, Signal Specificity, and Pathway Rewiring

20Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

Synthetic biosystems have been engineered that enable control of metazoan cell morphology, migration, and death. These systems possess signal specificity, but lack flexibility of input signal. To exploit the potential of Ca 2+ signaling, we designed RhoA chimeras for reversible, Ca 2+-dependent control over RhoA morphology and migration. First, we inserted a calmodulin-binding peptide into a RhoA loop that activates or deactivates RhoA in response to Ca 2+ signals depending on the chosen peptide. Second, we localized the Ca 2+-activated RhoA chimera to the plasma membrane, where it responded specifically to local Ca 2+ signals. Third, input control of RhoA morphology was rewired by coexpressing the Ca 2+-activated RhoA chimera with Ca 2+-transport proteins using acetylcholine, store-operated Ca 2+ entry, and blue light. Engineering synthetic biological systems with input versatility and tunable spatiotemporal responses motivates further application of Ca 2+ signaling in this field. © 2011 Elsevier Ltd. All Rights Reserved.

Cite

CITATION STYLE

APA

Mills, E., & Truong, K. (2011). Ca 2+-Mediated Synthetic Biosystems Offer Protein Design Versatility, Signal Specificity, and Pathway Rewiring. Chemistry and Biology, 18(12), 1611–1619. https://doi.org/10.1016/j.chembiol.2011.09.014

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free