Integrating Satellite and UAV Technologies for Maize Plant Height Estimation Using Advanced Machine Learning

3Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

The integration of aerial monitoring, utilizing both unmanned aerial vehicles (UAVs) and satellites, alongside sophisticated machine learning algorithms, has witnessed a burgeoning prevalence within contemporary agricultural frameworks. This study endeavors to systematically explore the inherent potential encapsulated in high-resolution satellite imagery, concomitantly accompanied by an RGB camera seamlessly integrated into an UAV. The overarching objective is to elucidate the viability of this technological amalgamation for accurate maize plant height estimation, facilitated by the application of advanced machine learning algorithms. The research involves the computation of key vegetation indices—NDVI, NDRE, and GNDVI—extracted from PlanetScope satellite images. Concurrently, UAV-based plant height estimation is executed using digital elevation models (DEMs). Data acquisition encompasses images captured on days 20, 29, 37, 44, 50, 61, and 71 post-sowing. The study yields compelling results: (1) Maize plant height, derived from DEMs, demonstrates a robust correlation with manual field measurements (r = 0.96) and establishes noteworthy associations with NDVI (r = 0.80), NDRE (r = 0.78), and GNDVI (r = 0.81). (2) The random forest (RF) model emerges as the frontrunner, displaying the most pronounced correlations between observed and estimated height values (r = 0.99). Additionally, the RF model’s superiority extends to performance metrics when fueled by input parameters, NDVI, NDRE, and GNDVI. This research underscores the transformative potential of combining satellite imagery, UAV technology, and machine learning for precision agriculture and maize plant height estimation.

Cite

CITATION STYLE

APA

Ferraz, M. A. J., Barboza, T. O. C., Arantes, P. de S., Von Pinho, R. G., & Santos, A. F. dos. (2024). Integrating Satellite and UAV Technologies for Maize Plant Height Estimation Using Advanced Machine Learning. AgriEngineering, 6(1), 20–33. https://doi.org/10.3390/agriengineering6010002

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free