AXIN-AMPK signaling: Implications for healthy aging

3Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

The energy sensor AMP kinase (AMPK) and the master scaffolding protein, AXIN, are two major regulators of biological processes in metazoans. AXIN-dependent regulation of AMPK activation plays a crucial role in maintaining metabolic homeostasis during glucose-deprived and energy-stressed conditions. The two proteins are also required for muscle function. While studies have refined our knowledge of various cellular events that promote the formation of AXIN-AMPK complexes and the involvement of effector proteins, more work is needed to understand precisely how the pathway is regulated in response to various forms of stress. In this review, we discuss recent data on AXIN and AMPK interaction and its role in physiological changes leading to improved muscle health and an extension of lifespan. We argue that AXIN-AMPK signaling plays an essential role in maintaining muscle function and manipulating the pathway in a tissue-specific manner could delay muscle aging. Therefore, research on understanding the factors that regulate AXIN-AMPK signaling holds the potential for developing novel therapeutics to slow down or revert the age-associated decline in muscle function, thereby extending the healthspan of animals.

Cite

CITATION STYLE

APA

Gupta, B. P., & Mallick, A. (2021). AXIN-AMPK signaling: Implications for healthy aging. F1000Research, 10. https://doi.org/10.12688/f1000research.74220.1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free