Genetic diversity of Plasmodium falciparum and genetic profile in children affected by uncomplicated malaria in Cameroon

18Citations
Citations of this article
132Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Malaria is a major public health problem in Cameroon. The study of the genetic diversity within parasite population is essential for understanding the mechanism underlying malaria pathology and to determine parasite clones profile in an infection, for proper malaria control strategies. The objective of this study was to perform a molecular characterization of highly polymorphic genetic markers of Plasmodium falciparum, and to determine allelic distribution with their influencing factors valuable to investigate malaria transmission dynamics in Cameroon. Methods: A total of 350 P. falciparum clinical isolates were characterized by genotyping block 2 of msp-1, block 3 of msp-2, and region II of glurp gene using nested PCR and DNA sequencing between 2012 and 2013. Results: A total of 5 different genotypes with fragment sizes ranging from 597 to 817 bp were recorded for GLURP. Overall, 16 MSP-1 genotypes, including K1, MAD20 and RO33 were identified, ranging from 153 to 335 bp. A peculiarity about this study is the RO33 monomorphic pattern revealed among the Pfmsp-1 allelic type. Again, this study identified 27 different Pfmsp-2 genotypes, ranging from 140 to 568 bp in size, including 15 belonging to the 3D7-type and 12 to the FC27 allelic families. The analysis of the MSP-1 and MSP-2 peptides indicates that the region of the alignment corresponding K1 polymorphism had the highest similarity in the MSP1and MSP2 clade followed by MAD20 with 93% to 100% homology. Therefore, population structure of P. falciparum isolates is identical to that of other areas in Africa, suggesting that vaccine developed with K1 and MAD20 of Pfmsp1 allelic variant could be protective for Africa children but these findings requires further genetic and immunological investigations. The multiplicity of infection (MOI) was significantly higher (P < 0.05) for Pfmsp-2 loci (3.82), as compare with Pfmsp-1 (2.51) and heterozygotes ranged from 0.55 for Pfmsp-1 to 0.96 for Pfmsp-2. Conclusion: High genetic diversity and allelic frequencies in P. falciparum isolates indicate a persisting high level of transmission. This study advocate for an intensification of the malaria control strategies in Cameroon. Trial registration This study was approved by Cameroon National Ethics Committee. It is a randomized controlled trial retrospectively registered in NIH U.S. National Library of Medicine, ClinicalTrials.gov on the 28/11/2016 at https://clinicaltrials.gov/ct2/show/NCT02974348 with the registration number NCT02974348

Cite

CITATION STYLE

APA

Metoh, T. N., Chen, J. H., Fon-Gah, P., Zhou, X., Moyou-Somo, R., & Zhou, X. N. (2020). Genetic diversity of Plasmodium falciparum and genetic profile in children affected by uncomplicated malaria in Cameroon. Malaria Journal, 19(1). https://doi.org/10.1186/s12936-020-03161-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free