This paper presents a comparative analysis of the technology gap, energy efficiency, and CO2 emission performance of the agglomerated cities in Eastern and Central China and South Korea under economic heterogeneity. The potential reductions of energy and CO2 emission are estimated from agglomerated city perspectives. The global meta-frontier non-radial direction distance function is used to conduct an empirical analysis of agglomerated cities among Eastern, Central China and South Korea. The results show the potential reduction of 7.58 billion tons of CO2 emissions in Korea and another potential reduction of 1930.62 toe energy for the research period in China, if Korea and China proactively collaborate with each other. The empirical results conclude several unique findings and their implications. First, there are significant differences between the Chinese and Korean cities, in energy efficiency, CO2 emission performance, and meta-technology gaps. Korean cities play a leading role at benchmarking efficiency level with meta-frontier technology. Second, there is no significant difference between total-factor and single-factor performance indexes in the Korean cities, because South Korea requires large capital stocks to replace energy in the production process. However, the opposite is true for Eastern and Central China cities. Finally, there is huge potential for the Chinese cities to reduce energy and CO2 emissions by "catching up" internally as well as by the collaborative efforts with Korean cities.
CITATION STYLE
Wang, N., & Choi, Y. (2019). Comparative analysis of the energy and CO2 emissions performance and technology gaps in the agglomerated cities of China and South Korea. Sustainability (Switzerland), 11(2). https://doi.org/10.3390/su11020475
Mendeley helps you to discover research relevant for your work.