Skip to main content

Adaptive polynomial rendering

28Citations
Citations of this article
50Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In this paper, we propose a new adaptive rendering method to improve the performance of Monte Carlo ray tracing, by reducing noise contained in rendered images while preserving high-frequency edges. Our method locally approximates an image with polynomial functions and the optimal order of each polynomial function is estimated so that our reconstruction error can be minimized. To robustly estimate the optimal order, we propose a multistage error estimation process that iteratively estimates our reconstruction error. In addition, we present an energy-preserving outlier removal technique to remove spike noise without causing noticeable energy loss in our reconstruction result. Also, we adaptively allocate additional ray samples to high error regions guided by our error estimation. We demonstrate that our approach outperforms state-of-the-art methods by controlling the tradeoff between reconstruction bias and variance through locally defining our polynomial order, even without need for filtering bandwidth optimization, the common approach of other recent methods.

Cite

CITATION STYLE

APA

Moon, B., McDonagh, S., Mitchell, K., & Gross, M. (2016). Adaptive polynomial rendering. In ACM Transactions on Graphics (Vol. 35). Association for Computing Machinery. https://doi.org/10.1145/2897824.2925936

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free