Functional roles of mouse sperm hyaluronidases, HYAL5 and SPAM1, in fertilization

78Citations
Citations of this article
79Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Although sperm entry into the oocyte-cumulus complex and subsequent sperm penetration through the cumulus matrix to reach the oocyte zona pellucida are essential for mammalian fertilization, the molecular mechanism remains controversial. Previously, we have shown that mouse sperm lacking SPAM1 are capable of penetrating the cumulus matrix despite a delayed dispersal of cumulus cells. We also have identified another sperm hyaluronidase, HYAL5, as a candidate enzyme involved in sperm penetration through the cumulus. In the present study, we produced HYAL5-deficient mice to uncover the functional roles of HYAL5 and SPAM1 in fertilization. The HYAL5-deficient mice were fully fertile and yielded normal litter sizes. In vitro fertilization assays demonstrated that HYAL5-deficient epididymal sperm is functionally normal. We thus conclude that HYAL5 may be dispensable for fertilization. Comparative analysis among wild-type, HYAL5-deficient, and SPAM1-deficient epididymal sperm revealed that only SPAM1 is probably involved in sperm penetration through the cumulus matrix. Notably, the loss of SPAM1 resulted in a remarkably increased accumulation of sperm on the surface or outer edge of the cumulus. These data suggest that SPAM1 may function in sperm entry into the cumulus and sperm penetration through the cumulus matrix. © 2009 by the Society for the Study of Reproduction, Inc.

Cite

CITATION STYLE

APA

Kimura, M., Kim, E., Kang, W., Yamashita, M., Saigo, M., Yamazaki, T., … Baba, T. (2009). Functional roles of mouse sperm hyaluronidases, HYAL5 and SPAM1, in fertilization. Biology of Reproduction, 81(5), 939–947. https://doi.org/10.1095/biolreprod.109.078816

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free