A revision of late Palaeozoic tectonics recorded in Tuscany, Calabria and Corsica is here presented. We propose that, in Tuscany, upper Carboniferous-Permian shallow-marine to continental sedimentary basins, characterized by unconformities and abrupt changes in sedimentary facies, coal-measures, red fanglomerate deposits and felsic magmatism, may be related with a transtensional setting where upper-crustal splay faults are linked with a mid-crustal shear zone. The remnants of the latter can be found in the deep-well logs of Pontremoli and Larderello-Travale in northern and southern Tuscany respectively. In Calabria (Sila, Serre and Aspromonte), a continuous pre-Mesozoic crustal section is exposed, where the lower-crustal portion mainly includes granulites and migmatitic paragneisses, together with subordinate marbles and metabasites. The mid-crustal section, up to 13 km-thick, includes granitoids, tonalitic to granitic in composition, emplaced between 306 and 295 Ma. They were progressively deformed during retrograde extensional shearing, with a final magmatic activity, between 295 ± 1 and 277 ± 1 Ma, when shallower dykes were emplaced in a transtensional regime. The section is completed by an upper crustal portion, mainly formed by a Palaeozoic sedimentary succession deformed as a low-grade fold and thrust belt, and locally overlaying medium-grade paragneiss units. As a whole, these features are reminiscent of the nappe zone domains of the Sardinia Variscan Orogen. In Corsica, besides the well-known effusive and intrusive Permian magmatism of the “Autochthonous” domain, the Alpine Santa Lucia Nappe exposes a kilometer-scale portion of the Permian lower to mid-crust, exhibiting many similarities to the Ivrea Zone. The distinct Mafic and Granitic complexes characterizing this crustal domain are juxtaposed through an oblique-slip shear zone named Santa Lucia Shear Zone. Structural and petrological data witness the interaction between magmatism, metamorphism and retrograde shearing during Permian, in a temperature range of c. 800–400 °C. We frame the outlined paleotectonic domains within a regional-scale, strain–partitioned, tectonic setting controlled by a first-order transcurrent/transtensional fault network that includes a westernmost fault (Santa Lucia Fault) and an easternmost one (East Tuscan Fault), with intervening crustal domains affected by extensional to transtensional deformation. As a whole, our revision allows new suggestions for a better understanding of the tectonic framework and evolution of the Central Mediterranean during the late Palaeozoic.
CITATION STYLE
Molli, G., Brogi, A., Caggianelli, A., Capezzuoli, E., Liotta, D., Spina, A., & Zibra, I. (2020). Late Palaeozoic tectonics in Central Mediterranean: a reappraisal. Swiss Journal of Geosciences, 113(1). https://doi.org/10.1186/s00015-020-00375-1
Mendeley helps you to discover research relevant for your work.