Spatial Distributions and Intrinsic Influence Analysis of Cr, Ni, Cu, Zn, As, Cd and Pb in Sediments from the Wuliangsuhai Wetland, China

5Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

The spatial distributions of Cr, Ni, Cu, Zn, As, Cd and Pb (potentially toxic elements, PTEs) in sediments and intrinsic influence factors from the Wuliangsuhai wetland of the Hetao Irrigation District, China were studied in this work. The results showed that excluding Zn, the total contents of other PTEs were higher than the background values, of which As (39.26 mg·kg−1) and Cd (0.44 mg·kg−1) were six-fold and seven-fold higher, respectively. Especially, the high levels of Cd (70.17%), Pb (66.53%), and Zn (57.20%) in the non-residual fraction showed high bioavailability and mobility. It indicated that PTEs can enter the food chain more easily and produce much toxicity. Based on Igeo, ICF, and MRI, the contamination of As was the most serious in the middle areas (MDP) of the wetland, and its risk was up to moderately strong. Cd and Pb posed moderate and considerate risk, respectively. Furthermore, 29.50% and 55.54% risk contribution ratio of As and Cd, respectively, showed that they were the dominant contaminants. In addition, the positive correlation between sand, OM, and total contents and chemical fractions of PTEs by using PCM, RDA, and DHCA indicated that physicochemical properties could significantly influence the spatial distributions of PTEs. The work was useful for assessing the level of pollution in the study area and acquiring information for future and possible monitoring and remediation activities.

Cite

CITATION STYLE

APA

Zhang, H., Liang, P., Liu, Y., Wang, X., Bai, Y., Xing, Y., … Hu, Y. (2022). Spatial Distributions and Intrinsic Influence Analysis of Cr, Ni, Cu, Zn, As, Cd and Pb in Sediments from the Wuliangsuhai Wetland, China. International Journal of Environmental Research and Public Health, 19(17). https://doi.org/10.3390/ijerph191710843

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free