Auxins reverse plant male sterility caused by high temperatures

289Citations
Citations of this article
295Readers
Mendeley users who have this article in their library.

Abstract

With global warming, plant high temperature injury is becoming an increasingly serious problem. In wheat, barley, and various other commercially important crops, the early phase of anther development is especially susceptible to high temperatures. Activation of auxin biosynthesis with increased temperatures has been reported in certain plant tissues. In contrast, we here found that under high temperature conditions, endogenous auxin levels specifically decreased in the developing anthers of barley and Arabidopsis. In addition, expression of the YUCCA auxin biosynthesis genes was repressed by increasing temperatures. Application of auxin completely reversed male sterility in both plant species. These findings suggest that tissue-specific auxin reduction is the primary cause of high temperature injury, which leads to the abortion of pollen development. Thus, the application of auxin may help sustain steady yields of crops despite future climate change.

Cite

CITATION STYLE

APA

Sakata, T., Oshino, T., Miura, S., Tomabechi, M., Tsunaga, Y., Higashitani, N., … Higashitani, A. (2010). Auxins reverse plant male sterility caused by high temperatures. Proceedings of the National Academy of Sciences of the United States of America, 107(19), 8569–8574. https://doi.org/10.1073/pnas.1000869107

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free