Abstract
Dimethylaminoparthenolide (DMAPT), a water-soluble analogue of natural product parthenolide, possesses anti-inflammatory and anti-tumor activities. Despite that the anti-inflammatory mechanism of DMAPT has been well studied, specific target(s) for DMPAT and its anti-tumor mechanism remain poorly understood. In this study, to assess the anti-proliferative effects of DMAPT in pancreatic cancer cell lines and exploit its anti-tumor mechanism, serial affinity chromatograph was implemented to probe potential targets for DMAPT, revealing that ribosomal protein L10 (RPL10) is a specific binding protein of DMAPT in PANC-1 cells. DMAPT could decrease the expression of RPL10 accompanying its anti-proliferative effects. Mechanistically, in both PANC-1 cells and MiaPaca-2 cells, reduced expression of RPL10 triggered by DMAPT binding decreased the expression of either p65 or IKKγ through the direct binding between RPL10 and p65 or IKKγ. Together, the present study strongly implies that RPL10 is a novel target with therapeutic potential for the treatment of pancreatic cancer.
Author supplied keywords
Cite
CITATION STYLE
Shi, C., Wang, Y., Guo, Y., Chen, Y., & Liu, N. (2017). Cooperative down-regulation of ribosomal protein L10 and NF-κB signaling pathway is responsible for the anti-proliferative effects by DMAPT in pancreatic cancer cells. Oncotarget, 8(21), 35009–35018. https://doi.org/10.18632/oncotarget.16557
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.