Background: Several members of the Methyl-Binding Domain protein family link DNA methylation with chromatin remodeling complexes in vertebrates. Amongst the four classes of MBD proteins, MBD2/3 is the most highly conserved and widespread in metazoans. We have previously reported that an mbd2/3 like gene (mbd-2) is encoded in the genomes of the nematodes Pristionchus pacificus, Caenorhabditis elegans and Caenorhabditis briggsae. RNAi knock-down of mbd-2 in the two Caenorhabditis species results in varying percentages of lethality. Results: Here, we report that a general feature of nematode MBD2/3 proteins seems to be the lack of a bona fide methyl-binding domain. We isolated a null allele of mbd-2 in P. pacificus and show that Ppa-mbd-2 mutants are viable, fertile and display a fully penetrant egg laying defect. This egg laying defect is partially rescued by treatment with acetylcholine or nicotine suggesting a specific function of this protein in vulval neurons. Using Yeast-two-hybrid screens, Ppa-MBD-2 was found to associate with microtubule interacting and vesicle transfer proteins. Conclusion: These results imply that MBD2/3 proteins in nematodes are more variable than their relatives in insects and vertebrates both in structure and function. Moreover, nematode MBD2/3 proteins assume functions independent of DNA methylation ranging from the indispensable to the non-essential. © 2007 Gutierrez and Sommer; licensee BioMed Central Ltd.
CITATION STYLE
Gutierrez, A., & Sommer, R. J. (2007). Functional diversification of the nematode mbd2/3 gene between Pristionchus pacificus and Caenorhabditis elegans. BMC Genetics, 8. https://doi.org/10.1186/1471-2156-8-57
Mendeley helps you to discover research relevant for your work.