Accurate prediction of the risk of progression of coronavirus disease (COVID-19) is needed at the time of hospitalization. Logistic regression analyses are used to interrogate clinical and laboratory co-variates from every hospital admission from an area of 2 million people with sporadic cases. From a total of 98 subjects, 3 were severe COVID-19 on admission. From the remaining subjects, 24 developed severe/critical symptoms. The predictive model includes four co-variates: age (>60 years; odds ratio [OR] = 12 [2.3, 62]); blood oxygen saturation (<97%; OR = 10.4 [2.04, 53]); C-reactive protein (>5.75 mg/L; OR = 9.3 [1.5, 58]); and prothrombin time (>12.3 s; OR = 6.7 [1.1, 41]). Cutoff value is two factors, and the sensitivity and specificity are 96% and 78% respectively. The area under the receiver-operator characteristic curve is 0.937. This model is suitable in predicting which unselected newly hospitalized persons are at-risk to develop severe/critical COVID-19.
CITATION STYLE
Xu, J., Wang, W., Ye, H., Pang, W., Pang, P., Tang, M., … Liang, Y. (2021). A predictive score for progression of COVID-19 in hospitalized persons: a cohort study. Npj Primary Care Respiratory Medicine, 31(1). https://doi.org/10.1038/s41533-021-00244-w
Mendeley helps you to discover research relevant for your work.