Physiological and morphological response of tomato plants to nano-chitosan used against bio-stress induced by root-knot nematode (Meloidogyne incognita) and Tobacco mosaic tobamovirus (TMV)

12Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Root-knot nematodes (Meloidogyne spp.) have been reported to be responsible for large economic losses of agricultural crops due to their wide host range and variety of suitable climates. The control measures of these parasitic nematodes depend upon synthetic nematicides and a small number bio-based products. Chemical nematicides are eliciting adverse effects on the environment and human health. In the present study, an alternative tool, nano-chitosan was tested for the control the root-knot nematodes, Meloidogyne incognita, and Tobacco mosaic tobamovirus (TMV) in greenhouse-cultivated tomato. The effect of nano-chitosan on morphological (weight and length of shoot and root systems) and biochemical responses (Polyphenol oxidase, Peroxides, Total soluble phenol and Total protein) was assessed. The obtained results indicated that densities of Meloidogyne incognita alone or in the presence of TMV were decreased by nano-chitosan at a range of 45.89 to 66.61%, while root gall desntiy was reduced between 10.63 and 67.87%. Moreover, the density of TMV on tomato leaves singly or in the presence of M. incognita was suppressed at range of 10.26 to 65.00% after 20 days of infection, and reached up to 58.00% after 40 days of infection. However, soil application of nano-chitosan pre infection reduced TMV density only by 5.48%. Morphogenesis of tomato plants such as shoot and root systems were significantly improved. The impacts of nano-Chitosan applications on total soluble phenol, total protein, polyphenol oxidase and peroxides after 20 and 40 days of infections varied.

Cite

CITATION STYLE

APA

Khalil, M. S., Abd El-Aziz, M. H., & Selim, R. E. S. (2022). Physiological and morphological response of tomato plants to nano-chitosan used against bio-stress induced by root-knot nematode (Meloidogyne incognita) and Tobacco mosaic tobamovirus (TMV). European Journal of Plant Pathology, 163(4), 799–812. https://doi.org/10.1007/s10658-022-02516-8

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free