Efficacy of black carbon aerosols: The role of shortwave cloud feedback

7Citations
Citations of this article
46Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Using idealized climate model simulations, we investigate the effectiveness of black carbon (BC) aerosols in warming the planet relative to CO2 forcing. We find that a 60-fold increase in the BC aerosol mixing ratio from the present-day levels leads to the same equilibrium global mean surface warming (∼4.1 K) as for a doubling of atmospheric CO2 concentration. However, the radiative forcing is larger (∼5.5 Wm-2) in the BC case relative to the doubled CO2 case (∼3.8 Wm-2) for the same surface warming indicating the efficacy (a metric for measuring the effectiveness) of BC aerosols to be less than CO2. The lower efficacy of BC aerosols is related to the differences in the shortwave (SW) cloud feedback: negative in the BC case but positive in the CO2 case. In the BC case, the negative SW cloud feedback is related to an increase in the tropical low clouds which is associated with a northward shift (∼7) of the Intertropical Convergence Zone (ITCZ). Further, we show that in the BC case fast precipitation suppression offsets the surface temperature mediated precipitation response and causes ∼8% net decline in the global mean precipitation. Our study suggests that a feedback between the location of ITCZ and the interhemispheric temperature could exist, and the consequent SW cloud feedback could be contributing to the lower efficacy of BC aerosols. Therefore, an improved representation of low clouds in climate models is likely the key to understand the global climate sensitivity to BC aerosols.

Cite

CITATION STYLE

APA

Modak, A., & Bala, G. (2019). Efficacy of black carbon aerosols: The role of shortwave cloud feedback. Environmental Research Letters, 14(8). https://doi.org/10.1088/1748-9326/ab21e7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free