Cytotoxic necrotizing factor 1 from Escherichia coli and dermonecrotic toxin from Bordetella bronchiseptica induce p21(rho)-dependent tyrosine phosphorylation of focal adhesion kinase and paxillin in Swiss 3T3 cells

77Citations
Citations of this article
32Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Treatment of Swiss 3T3 cells with cytotoxic necrotizing factor 1 (CNF1) from Escherichia coli and dermonecrotic toxin (DNT) from Bordetella bronchiseptica, which directly target and activate p21(rho), stimulated tyrosine phosphorylation of focal adhesion kinase (p125(fak)) and paxillin. Tyrosine phosphorylation induced by CNF1 and DNT occurred after a pronounced lag period (2 h), and was blocked by either lysosomotrophic agents or incubation at 22 °C. CNF1 and DNT stimulated tyrosine phosphorylation of p125(fak) and paxillin, actin stress fiber formation, and focal adhesion assembly with similar kinetics. Cytochalasin D and high concentrations of platelet-derived growth factor disrupted the actin cytoskeleton and completely inhibited CNF1 and DNT induced tyrosine phosphorylation. Microinjection of Clostridium botulinum C3 exoenzyme which ADP-ribosylates and inactivates p21(rho) function, prevented tyrosine phosphorylation of focal adhesion proteins in response to either CNF1 or DNT. In addition, our results demonstrated that CNF1 and DNT do not induce protein kinase C activation, inositol phosphate formation, and Ca2+ mobilization. Moreover, CNF1 and DNT stimulated DNA synthesis without activation of p42(mapk) and p44(mapk) providing additional evidence for a novel p21(rho)-dependent signaling pathway that leads to entry into the S phase of the cell cycle in Swiss 3T3.

Cite

CITATION STYLE

APA

Lacerda, H. M., Pullinger, G. D., Lax, A. J., & Rozengurt, E. (1997). Cytotoxic necrotizing factor 1 from Escherichia coli and dermonecrotic toxin from Bordetella bronchiseptica induce p21(rho)-dependent tyrosine phosphorylation of focal adhesion kinase and paxillin in Swiss 3T3 cells. Journal of Biological Chemistry, 272(14), 9587–9596. https://doi.org/10.1074/jbc.272.14.9587

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free