The present-day flux from mantle to crust is basaltic and yet the average composition of the continental crust is andesitic. This is the crust composition paradox. A new solution to this paradox is proposed whereby the secular evolution in the composition of the continental crust reflects a changing flux from mantle to crust over time. Thus it is proposed that the present-day composition of the continental crust is a time-integrated average. Crustal growth curves show that 48-54% of the continental crust was formed by the end of the Archaean. A mass balance model based upon a tonalite-trondhjemite- granodiorite compositional model for the Archaean continental crust shows that the post-Archaean mantle to crust flux was predominantly basaltic and likely a mix of arc-plume basalts. Trace element modeling, however, reveals that additional processes also contributed to the average crust composition. Balancing Y, Ho, and Yb concentrations requires a garnetiferous mafic granulite lower Archaean crust, which in turn drives the post-Archaean flux toward a high mg # andesite. This suggests that there was a slab melt contribution to the continents, in addition to basalt. An excess of fluid mobile elements in the continental crust can be explained either by the addition of a slab melt or small fraction melts. A deficiency in Sr requires that the post-Archaean crustal composition has been modified by erosion. Both Archaean and post-Archaean continental crust contain contributions from basalt and a slab melt. In the Archaean crust the slab melt contribution is dominant. In the post-Archaean crust the basaltic contribution is dominant. © 2008 by the American Geophysical Union.
CITATION STYLE
Rollinson, H. (2008). Secular evolution of the continental crust: Implications for crust evolution models. Geochemistry, Geophysics, Geosystems, 9(12). https://doi.org/10.1029/2008GC002262
Mendeley helps you to discover research relevant for your work.