A Non-Linear Structural Probe

13Citations
Citations of this article
59Readers
Mendeley users who have this article in their library.

Abstract

Probes are models devised to investigate the encoding of knowledge—e.g. syntactic structure—in contextual representations. Probes are often designed for simplicity, which has led to restrictions on probe design that may not allow for the full exploitation of the structure of encoded information; one such restriction is linearity. We examine the case of a structural probe (Hewitt and Manning, 2019), which aims to investigate the encoding of syntactic structure in contextual representations through learning only linear transformations. By observing that the structural probe learns a metric, we are able to kernelize it and develop a novel non-linear variant with an identical number of parameters. We test on 6 languages and find that the radial-basis function (RBF) kernel, in conjunction with regularization, achieves a statistically significant improvement over the baseline in all languages—implying that at least part of the syntactic knowledge is encoded non-linearly. We conclude by discussing how the RBF kernel resembles BERT’s self-attention layers and speculate that this resemblance leads to the RBF-based probe’s stronger performance.

Cite

CITATION STYLE

APA

White, J. C., Pimentel, T., Saphra, N., & Cotterell, R. (2021). A Non-Linear Structural Probe. In NAACL-HLT 2021 - 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Proceedings of the Conference (pp. 132–138). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/2021.naacl-main.12

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free