Characterization and partial purification of Candida albicans secretory IL-12 inhibitory factor

Citations of this article
Mendeley users who have this article in their library.


Background. We have previously shown that supernatant from Candida albicans (CA) culture contains a Secretory Interleukin (IL)-12 Inhibitory Factor (CA-SIIF), which inhibits IL-12 production by human monocytes. However, the effect of CA-SIIF on secretion of other cytokines by monocytes is unknown, and detailed characterization of this factor has not been performed. Results. In this study, we demonstrate that the IL-12 inhibitory activity of CA-SIIF was serum-independent, based on the reduction of IL-12 levels in monocytes stimulated under serum-independent conditions. The minimal inhibitory dose of CA-SIIF was found to be 200 μg/ml. Investigation of CA-SIIF's effect on macrophages IL-12 production in vitro and in vivo also showed that CA-SIIF inhibited IL-12 production by murine macrophages both in vitro (from 571 ± 24 pg/ml to 387 ± 87 pg/ml; P = 0.05) and in vivo (from 262 ± 6 pg/ml to 144 ± 30 pg/ml; P < 0.05). In addition to IL-12, cytokine array analysis revealed that CA-SIIF induced differential production of other cytokines also. In this regard, reduction in levels were observed for IL-8, IL-10, IL-13, monocyte chemoattractant protein (MCP)-1, MCP-2, macrophage inflammatory protein (MIP)-1, RANTES, etc. In contrast, levels of other chemokines e.g. MCP-4, MIF and MIP-3α (P < 0.05) were increased. We also found that CA-SIIF suppressed the maturation of human monocytes to dendritic cells (CD1a expression = 13 ± 3% vs 36 ± 2% of the control; P < 0.01). Next, to identify the biochemical nature of CA-SIIF, we separated this factor into a Concanavalin A (ConA)-binding glycoprotein fraction (CA-SIIF-GP) and a non-ConA-binding protein fraction (CA-SIIF-NGP) using ConA affinity chromatography. Both fractions were then tested for this inhibitory effect on human monocyte IL-12 production. CA-SIIF-GP produced a higher inhibitory effect on IL-12 production compared to CA-SIIF-NGP and CA-SIIF crude (P < 0.01), proving that CA-SIIF is a glycoprotein in nature. Conclusion. CA-SIIF is a glycoprotein which exhibits serum-independent inhibition of IL-12 production from monocytes in vitro and in vivo, and also modulates differentiation of monocytes into dendritic cells. These results suggest important role for CA-SIIF in interactions of C. albicans with the host immune system. © 2008 Wang et al; licensee BioMed Central Ltd.




Wang, M., Mukherjee, P. K., Chandra, J., Lattif, A. A., McCormick, T. S., & Ghannoum, M. A. (2008). Characterization and partial purification of Candida albicans secretory IL-12 inhibitory factor. BMC Microbiology, 8.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free