The CMS data aggregation system

Citations of this article
Mendeley users who have this article in their library.


Meta-data plays a significant role in large modern enterprises, research experiments and digital libraries where it comes from many different sources and is distributed in a variety of digital formats. It is organized and managed by constantly evolving software using both relational and non-relational data sources. Even though we can apply an information retrieval approach to non-relational data sources, we can't do so for relational ones, where information is accessed via a pre-established set of data-services. Here we discuss a new data aggregation system which consumes, indexes and delivers information from different relational and non-relational data sources to answer cross data-service queries and explore meta-data associated with petabytes of experimental data. We combine the simplicity of keyword-based search with the precision of RDMS under the new system. The aggregated information is collected from various sources, allowing end-users to place dynamic queries, get precise answers and trigger information retrieval on demand. Based on the use cases of the CMS experiment, we have performed a set of detailed, large scale tests the results of which we present in this paper.




Kuznetsov, V., Evans, D., & Metson, S. (2010). The CMS data aggregation system. In Procedia Computer Science (Vol. 1, pp. 1535–1543). Elsevier B.V.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free