CO 2 laser micromachining of optical waveguides for interconnection on circuit boards

12Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The introduction of microvia and surface mount technologies into the manufacturing process for printed circuit boards (PCBs) has significantly improved the interconnection density. However, as the speed of signals for data communication on the board approaches and begins to exceed 10 Gb/s, the loss and crosstalk of copper interconnections increase. To resolve these problems, optical interconnections (OI) have been suggested as a viable solution. Literature reports have proved the photochemical nature of excimer laser ablation with its minimal thermal effect, and other ultra-violet lasers are also being investigated for the fabrication of polymer waveguides by laser ablation. In this paper, the authors demonstrate the fabrication of multimode optical polymer waveguides by using infra-red 10.6 μm CO 2 laser micromachining to etch acrylate-based photopolymer (Truemode™). CO 2 lasers offer a low cost and high speed fabrication route as CO 2 lasers can be used to cut through various engineering materials including polymers and metals. The paper characterises the relationship between the laser ablation power, the fabrication speed and the resulting effect on the waveguide optical insertion loss for the first time. © 2012 Elsevier Ltd.

Cite

CITATION STYLE

APA

Zakariyah, S. S., Conway, P. P., Hutt, D. A., Wang, K., & Selviah, D. R. (2012). CO 2 laser micromachining of optical waveguides for interconnection on circuit boards. Optics and Lasers in Engineering, 50(12), 1752–1756. https://doi.org/10.1016/j.optlaseng.2012.07.005

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free